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Transient Analysis of Lossy Parabolic
Transmission Lines with Nonlinear Loads

Pierre Bouchard, Member, IEEE, and R4al R. J. Gagn6, Member, IEEE

Abstract—The exact analytical expressions of the time-domain
step response matrix parameters for the lossy parabolic transmis-
sion line are developed, therefore extending the range of problems
where Allen’s method can be applied for the transient analysis
of networks consisting of interconnections of linear distributed
elements, lumped linear and/or nonlinear elements, and arbitrary
sources. Nor completeness, similar expressions are derived for the
lossless parabolic line. In order to demonstrate the versatility of
the techniques presented in this paper, we study the transient
response of a lossy parabolic line subjected to the following sets
of boundary conditions: 1) a unit step input and a linear load,
and 2) a trapezoidal pulse generator and a nonlinear load.

I. INTRODUCTION

D

ESPITE its applications in electronic packaging design

and other areas, the transient behavior of nonuniform

two-conductor transmission lines has been addressed only by

a limited number of papers [1 ]–[ 10]. The reader is referred to a

recent paper by the authors [11] for a discussion of [1]–[9]. We

would also like to mention the work of Shutt-Aine [10], who

studied tapered microstrip lines using a scattering parameter

formulation in the time domain. With this approach, however,

the nonuniform lines must be discretized along their length, as

in [ 1]–[3] and [7], which is unattractive in terms of computer

memory requirement and CPU time.

In this paper, transients on lossy parabolic lines are studied

following Silverberg and Wing’s approach [12] (revised by

Allen [13]), which was originally applied to lossless and lossy

but distorsionless uniform lines in [12], [13], and extended

to Iossless exponential transmission lines by Bouchard et al.

[11]. This numerical method can be used for the transient
analysis of networks consisting of interconnections of linear
distributed elements, lumped linear and/or nonlinear elements
and arbitrary independent or dependent sources. The overall
network is solved in the time domain using convolution
techniques. According to [13], each linear subnetwork is
characterized in the time domain by a step response matrix

z (t).

The inverse Laplace transform is used to obtain the exact

analytical expressions of the elements of the ~ (t) matrix for
the lossy parabolic line, thus widening the range of application
of Allen’s method [13]. For completeness, similar expressions
are derived for the lossless parabolic line. Moreover, complete
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transient responses of a lossy parabolic line with linear and
nonlinear loads are simulated for illustration.

II. TIME-DOMAIN STEP RESPONSE

MATRIX OF A LossY PARABOLIC LINE

Ghausi and Kelly [14] obtained the Y parameters (short-

circuit admittances) in closed form for a class of nonuni-
form distributed networks in which the per-unit-length series
impedance 2(s, z) and the per-unit-length shunt admittance

Y(s, z) can be separated into functions of the Laplace trans-
form variables and the distance z along the line; moreover, the
product 2(s, z)Y(s, z) is independent of z. In other words,
these authors restricted their study to networks such that

2(s, z) =
z(s)
- and Y(s, x) = Y(s)p(z) (1)

where Z(s) = R. + SLO and Y(s) = GO + SC’Ofor a lossy
line. The function p(z) describes the variations of the four
distributed parameters along the line: Ro, Lo, Go, and Co
represent their values at z = O.

We consider a parabolic line for which

P(.)=(1+;)2 (Z+K)+O

where K is in meters. The “characteristic impedance”

parabolic line can be written, using (1) and (2), as

r dR“+5L*
2(s> ~) =20(s,2) = —

GO+SCO

Y(S> :) (1+ :)’

(2)

of this

(3)

Thus, the “characteristic impedance” is complex, with a dis-
tinct resistive and reactive part at each point of the line.
Following Chang [9], we shall specify the impedance vari-
ations of the parabolic line using the high-frequency value of
20 (s, z) looking at the near end and at the far end.

Substitution of the above expressions into [14, (4)-(16)]
yields the short-circuit admittance parameters of the parabolic
line in the Laplace transform domain:

Yll(s) =
1

[

A(s) COth A(s) + :

(RJ + SL(I) 1 1

(4a)
K

Y1’(S) = Y~~(s) = –
(1+ :)

(R. + S~O)z
A(s) csch A(s) (4b)

(1+ :)2 A(s) cothA(s) _ (l: ~, (4c)
152(s) =

[(Ro + SLl)) 1 1
where

A(s) = //(R. + sLO)(GO + SCO) (5)

and 1 is the length of the line in meters.
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Thegoal here istoobtain thestep response matrix~ (t)

in the time domain, which is related to the short-circuit

admittance matrix in the following manner [13]:

the first term of (7a) can be expanded into a series:

/

2Y~(o) (s+ p)
All(s) = — —

s (s+ a)

: (t) = L-1{2(s)} = L-l{(l/s) F (s)}. (6) 1
+ (14)

sLoK(s + a)”

Taking the inverse transform of (14) term by term, using [15,
p. 253, #3.2–64] and also [15, p. 181, #l–2] and reworking
constants (9) and (10), yields

It is thus necessary to evaluate the inverse Laplace transform of

{

Ye(o) (s+ @
All(s) = —

s
~coth(7~(s + a)(S + @))

1
+ (7a)

sL@(s + a)

co

all(t) = 2YO(0)~.5. [e-pt10[o{_]
n=o

+p
/ 1te–@~o[a/~] CiX ‘U(~– 277J7)

2nr

+
(1 - e-q

R. K
u(t) (15)

with

‘=:(”+ 8)=%+%) ‘1’)

and

‘=i(a-~)=:(%%) ’17)

Ye(o)
A12(s) = AZI(S) = –—

( ){

(s+ P)1+1 —
s K (s+ a)

. csch (~~(S + a)(S + ~)) (7b)

Ye(o)
A2Z(S) = —

( ){

2 (s+0)1+: —
s (s+ a)

(1+ K). ~oth(~~(s + a)(s + P)) – s~oK2(s + (-J)

(7C)
lo(y) is the modified Bessel function of the first kind of index
zero [16].

The evaluation of a22 (t) follows a line similar to that used
for all (t), which gives

where

(8)

(9)

(lo) _ (1+ K)(1 - e-a’) u(t)

ROK2
(18)

This section is closed with the evaluation of al’(t). Since
[17]

co
Even though the line is lossy, the coefficient (Co/Lo) 1/2

still appears as it did in the case of the lossless exponential line
(see [11, (19), (20), (23)]). This time, YO(0) can be interpreted
as the high-frequency value of the “characteristic admittance”

at z = O [see (3)].
With the exception of the second term of (7a) and (7c),

the inverse transform of the elements Aij (s) in (7) cannot be
found directly in two of the most complete tables of Laplace
transforms [15], [16]. Accordingly, it seems appropriate to
show how the inverse Laplace transforms of these expressions
were obtained.

The evaluation of all(t) = .C-l {All(s)} is considered first.
Since [17]

cschx = 2~e–f2m–ljz Re (z) >0 (19)

(7b) can also be expressed as a series expansion

-. .,
?J=l

Taking the inverse transform of (20) term by term, using once
again [15, p. 253, #3.2–64], readily gives

()al’(t) = azl(t) = –2Yo(0) 1 + ~

co

cothx = 2~e.e–2nX Re (z) >0 (12)
n=l)

. ~[e-Pt10[o{t2 - (2n - I)2T2]
n=l

where

J
t+@ e–p’lo[o ~X2 – (2n – 1)2T2] dx

(2n-l)r 1
{

1/2, n=()
en =

1, n>O
(13)

. u(t – (2n – 1)7). (21)
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This terminates the evaluation of the four elements of the step
response matrix for a lossy parabolic line. For completeness,
we shall derive similar expressions for the lossless parabolic
line in the next section.

III. TIME-DOMAIN STEP RESPONSE

MATRIX OF A LOSSLESS PARABOLICLINE

For the lossless parabolic line, R. = Go = O, so we
have a = @ = O from (9) and (10). Consequently, the
analytical expressions of the time-domain step response matrix
parameters for the lossless case can readily be obtained by
first substituting a = P = O in (14), (20) and in a similar
series expansion for (7c), and then by evaluating their inverse
Laplace transforms term by term using [15, p. 227, #3.O-2]
and [15, p. 185, # 1–37]. Therefore, the step response matrix
becomes

cc
t

all(t) = 2Yo(o)~4 – 2nT) + —u(t)
LOK

(22a)
n=o

( )m
ulz(t) = azl(t) = –2Yo(0) 1 + ~ ~u(t – (2n – l)T)

‘n=l
(22b)

()
2c0

a22(t) = 2Yo(0) 1 + ~ ~e.u(t – 2n7_)
‘n=o

_(l+ti)
~tu(t). (22C)

IV. CONSIDERATIONSON THE NUMERICALEVALUATION

The modified Bessel function 10(y) was computed using the
routine found in [18]. The indefinite integrals in (15), (18), and
(21 ) require numerical techniques for their evaluation and the
composite trapezoidal rule (e.g., algorithm QTrap in [18]) was
found to be well suited for that task.

V. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the possible uses of the
matrix obtained in Section II, two examples are
presented.

Example 1: We consider the transient response of a single
lossy parabolic line driven by a voltage generator with an
internal resistance of Rg = 50 Q and terminated in a pure
linear resistance RL = 100 Q (Fig. 1]. The line is 0.05 m
long and is characterized by the parameters R. = 70 Q/m,
Lo = 0,4 @Urn, GO = 0.0005 S/m, and Co = 160 pF/m
at z = O. Parameter K in (2) is chosen so that the high-
frequency limit of the “characteristic impedance” 20 (s, z) is,
respectively, 50 Q at the input port and 100 Q at the output
end of the line. The applied voltage is a unit step with a finite
rise time approximated, as in [11], by the incomplete Beta
function [18]: Vg(t)= Iz (4, 4). Its rise time, from 10% to
90% of its final value, is very nearly 0.14 ns. Allen’s method
has been applied to compute the transient response. In order

to evaluate the convolution equation (7) in [13], we used a
central-difference formula to approximate the derivative of
the voltage and an open extended quadrature formula [19].

1,01 )

’05l++=-?u
00 1 2 3 4

t (ns)

(a)

t (ns)

(b)

“LL——__—
0 1 2 3 4

t (ns)

(c)

Fig. 1. Step response waveforms for the lossy parabolic line network
(Example 1). (a) Generator voltage: Vg(t) = lZ (4, 4) with z = t/(80 A), for
0+ < t < 80 flandvg(t) = 1 fort > 80A. Rg = 50 Qand FtL = 1000.
(b) ~endfig end voltage. (c) Receiving end voltage.

The network of Fig. 1 is composed of a single two-port,

the parabolic line, characterized in the time domain by (15),
(21), and (18). It is subjected to the bounda~ conditions
q(t) = Vg(t)– Rgil(t)at z = O and Vz(t) = R~i2(t)
at z = 1. The transient voltages at both ends of the line
are shown in Fig. l(b) and (c) for 0+ < t < 10t-, with
a time step A = T/100 = 4 ps [13]. Like the exponential
line [1 1], the parabolic line is not matched for every type of
signal by merely forcing the equality between Rg and the high-
frequency “characteristic impedance” 20 (.s, O) = 50 Q at the
sending end and, also, between RL and the high-frequency
“characteristic impedance” 20 (s, 1) = 100 Cl at the receiving
end. Indeed, the effects of multiple reflections can be seen in
Fig. l(b) and (c). As a check, we replaced the lossy line with
a lossless parabolic line characterized by the step response
matrix given in (22): the receiving end voltage V2(t) for
t = 10T = 4 ns was equal to 0.6665 V, which is quite close
to the theoretical value given by the voltage divider equation

RL/(Rg + RL) = 0.6667. In the case illustrated in Fig. l(c),
the voltage wz(t) for t = 10~ = 4 ns was equal to 0.6448 V,
due to the presence of conductor and dielectric losses.
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Fig. 2. Transient response to atrapezoidal input of the circuit in Fig, l(a)
with resistor RL replaced by an Advanced Schottky TTL mverter (Example
2). (a) Sending end voltage. (b) Receiving end voltage.

Example 2: Next, we consider the same configuration as in
Fig. 1, but resistor RL is replaced by an Advanced Schottky
TTL inverter. The voltage generator now delivers a trapezoidal
pulse with rise and fall times (between O% and 100% of
their final values) of 0.32 ns, a pulse width of 2.8 ns, and
an amplitude of 5 V. We used the simplified model proposed

by Shutt-Aine and Mittra [20, Fig. 7(c)] to represent the input
of the digital device, i.e., a reverse-biased Shottky diode with

a saturation current of 10– 12 A in parallel with an 8 pF
linear capacitor. The discrete circuit model associated with

Gear’s second-order algorithm [21] was used to compute the
voltage and the current across the capacitor at each time step.
The operating points of the nonlinear resistor were computed
using the iterative piecewise linear method developed by Chua
[22], [23]. Fig. 2 shows the voltage response at both ends

of the line for 0+ < t < 187-, computed using Allen’s
method, with a time step A = ~/100 = 4 ps [13]. It

is interesting to note that even though the line is badly
mismatched at the load end because of the logic gate, the
voltage V2(t) has a smoother pulse shape than the sending end
voltage VI(t). Reflections from the load are clearly seen in
Fig. 2(a).

VI. CONCLUSION

The exact analytical expressions of the step response matrix
parameters for the lossy parabolic transmission line have
been developed in the time domain, therefore extending the
range of problems where Allen’s method can be applied.
This approach can be used to compute the transient re-
sponse of networks containing lossy parabolic lines subjected

to quite general boundary conditions for any time span of
interest. For completeness, we also derived the analytical

expressions of the step response matrix parameters for the

lossless parabolic line. In order to demonstrate the usefulness

of the techniques presented in this paper, the response to

a physical step and, also, to a trapezoidal input have been
presented for a lossy parabolic line terminated in the first
case by a linear load and, in the second case, by a nonlinear
load.
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